

InterSense Inc., a market leader in precision motion technology, is proud to announce the NavChip[™] - the world's smallest IMU. At roughly the size of a penny, the NavChip employs groundbreaking MEMS technology to provide unprecedented noise and stability improvements. As the industry's first commercial IMU chip, the breakthrough NavChip represents a 12-fold improvement in noise and a six-fold improvement in drift compared to previous commercial-grade MEMS IMUs.

Key benefits include:

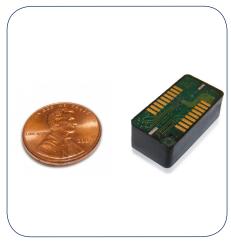
- World's smallest IMU
- Unprecedented gyro and accel noise and stability approaching FOG-grade performance
- Low power consumption
- Large dynamic range
- Factory calibration and temperature compensation
- Surface mountable for easy OEM integration
- Epoxy encapsulated for environmental ruggedness and long-term stability

NavChip dimensions 12.00 mm x 23.25 mm x 7.75 mm

Applications

- GPS/INS Integration
- Robotics
- UAVs
- Aiming & Alignment
- Agriculture
- Platform Stabilization

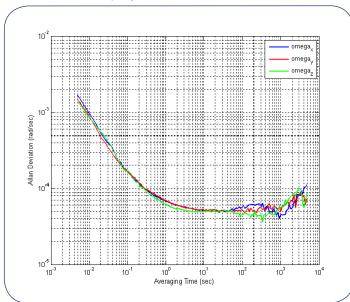
Contact us at **+1 781 541 7650** or **ISinfo@intersense.com** for more details on using InterSense technology or becoming a distribution partner.


InterSense Inc. 4 Federal Street Billerica, MA 01821 USA

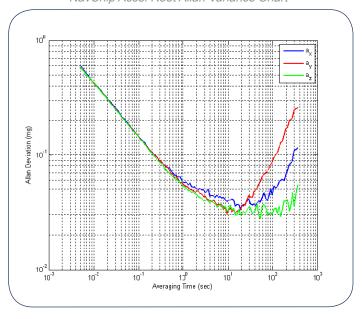
T: + 1 781 541 6330 F: +1 781 541 6329 www.intersense.com

Typical Data*

Output format	3V TTL UART & SPI
Default message format	Compensated ΔΘ, ΔV
Supply voltage range	3.25 - 5.5 V
Power consumption	120 mW
Operating temperature range	-40°C to +85°C
Start-up time	< 1s
Output data rate	up to 1000 Hz
Weight	6 grams
Dimensions	12.00 mm x 23.25 mm x 7.75 mm
Angular Rate	<u> </u>
Rate range	+/- 2000°/s (+/- 35 rad/s)
Angular random walk	0.25°/√hr
Noise density	0.004°/s/√Hz
Bias in-run stability	12°/hr
Bandwidth (-3dB)	200 Hz
Linearity over +/- 300°/s	0.1%
Linearity over FS	0.5%
Linear Acceleration	
Acceleration range	+/- 11 g
Velocity random walk	0.045 m/s/√hr
Noise density	70 μg/√Hz
Bias in-run stability	0.05 mg
Bandwidth (-3dB)	200 Hz
Linearity over +/- 2 g	0.1%
Linearity over FS	1%
RoHS compliant	Yes



InterSense NavChip


Pin #	Signal Name	Comment
1	NC	Reserved for Factory Use
2	NC	Reserved for Factory Use
3	NC	Reserved for Factory Use
4	NC	Reserved for Factory Use
5	SPI_DR	SPI data ready output
6	NC	Reserved for Factory Use
7	NC	Reserved for Factory Use
8	NC	Reserved for Factory Use
9	V_{L0GIC}	3V logic reference output
10	Vss	Power supply return
11	Vin	Power supply
12	Rx	UART receive input
13	Tx	UART transmit output
14	Vss	Power supply return
15	Sync	TTL sync input
16	SPI_SCK	SPI serial clock input
17	SPI_SDO	SPI data output
18	SPI_SDI	SPI data input
19	SPI_CS	SPI chip select input
20	Vss	Power supply return

NavChip pin connections

NavChip Gyro Root Allan Variance Chart

NavChip Accel Root Allan Variance Chart

^{*} All specifications are preliminary and subject to change